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A new mathematical formulation of electrodynamics is presented in which the 
field equations and the conservation law for the energy-momentum tensor appear 
as the components of a single geometric object. The construction is based upon 
a geometric structure on the 2-forms over an even-dimensional vector space that 
parallels a geometric structure on 1-forms over R 4 determined by special relativity. 
In this construction charge appears as the analog of mass. In special relativity 
the conservation of mass implies the relation (d /d t ) e  = (f, v); here the conserva- 
tion of charge implies the relation div E = i(J)F, when the energy-momentum 
tensor E and field strength F are given a "relativistic" interpretation. 

1. I N T R O D U C T I O N  

I present  a model  of e lect rodynamics  that  leads to a unif icat ion of  the 
equat ions  of  mot ion  and  the conservat ion law that is both  formal ly  and  
mathemat ica l ly  similar to the unif icat ion of power  and  force ob ta ined  in 
relativistic mechanics.  One  advantage  of relativistic mechanics  is that it 
allows a deeper  unde r s t and ing  of the relat ion be tween the conservat ion of  

energy and  the conservat ion of  mass. It does so by modify ing  the conserva- 
t ion law so that the classical relat ion is ob ta ined  in the l imit of  small  
velocities. The mathemat ica l  technique that  under l ies  the cons t ruct ion  of 
relativistic mechanics  is actual ly a special and  easy example  of an extended 
dynamica l  formalism. By apply ing  this formal ism to e lectromagnet ism,  I 
develop a non l i nea r  e lect rodynamics  that is formally ana logous  to relativistic 
mechanics.  A complete  descr ipt ion of the general  const ruct ion will appear  
elsewhere. 

Classical mechanics  fails to provide a satisfactory representa t ion of  
the relat ion between energy and  mass unt i l  one  gives up the pr inciple  of 
universal  t ime; that is, the parametr iza t ions  of  solut ions to a given dynamica l  
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problem cannot be fixed apriori, but depend upon the nature of the problem. 
The premise of this article is that a similar prescription applies to electrody- 
namics. What is given up is the representation of the vector potential by a 
1-form. What is gained is a nonlinear electrodynamics that relates charge 
conservation to the conservation of field energy-momentum. However, as 
in special relativity, the classical laws are obtained only as approximations 
to the complete "relativistic" expression in the limit of small field strengths. 

The remainder of this article is divided into three sections. Section 2 
develops a linear algebraic structure on the space of 2-forms over an 
even-dimensional vector space that has properties similar to the conformal 
Lorentz group. In Section 3 the results of Section 2 are used to derive 
dynamical equations for electromagnetism that are similar to those obtained 
by Born and Infeld (1934). Concluding remarks are given in Section 4. 

2. RELATIVISTIC S T R U C T U R E S  FOR 2 - F O R M S  

This section develops a linear algebraic structure on the nondegenerate 
2-forms over an even-dimensional vector space that parallels the relativistic 
structure on the 1-form over Minkowski space. Let V be a real vector space 
of dimension 2n. If X is a subspace of V, denote the subspace of the dual 
space that annihilates X by ann(X).  Recall that if A c E n d ( V )  satisfies 
ker(A) =ker(A2), then A possesses a commutative generalized inverse, 
A * ~ End(V).  The A * is uniquely determined by the relations (1) A ~ A A  ~ = 
A ~, (2) A A ~ A  = A, (3) A * A  = A A  ~. Also, if A c End(V),  denote the spec- 
trum of A by spec(A), which is the set of eigenvalues of A, each occurring 
as many times as their multiplicity. 

The primary geometric objects of this construction are ordered pairs 
of n-dimensional subspaces of V. A pair (X, Y) is a splitting of V if 
X n Y = 0. A splitting (X, Y) determines a projection P c End(V) defined 
by setting ran(P)  = Y and ker(P) = X. The complementary projection 1 - P 
shall be denoted by P• Given two pairs of  subspaces (X, Y) and (X',  Y'), 
the ordered pair ((X, Y), (X',  Y')) is called a transverse pair if X ~ Y' = 0 
and X '  n Y = 0. If  (X, Y) is a splitting, a transverse pair ((X, Y), (X',  Y')) 
determines a pair of linear maps (A*, A); (the star has no algebraic sig- 
nificance). We define A*~ End(V) by (1) r an (A * )c  y c  ker(A*) and (2) 
for any u ~ X, u + A*u c X'.  Similarly, A c End(V) is defined by the condi- 
tions (1) r a n ( A ) c X c k e r ( A )  and (2) for any u~ Y, u + A u ~  Y'. The pair 
(A*, A) is called the graph coordinate of ((X, Y), (X',  Y')). 

Proposition 2.1. Let (X, Y) be a splitting, and let ((X, Y), (X',  Y')) be 
a transverse pair with graph coordinate (A*, A). Now, (X',  Y') is a splitting 
if l~spec(A*A) ,  or equivalently, if r a n ( P - A ' A ) =  Y, where P is the 
projection defined by (X, Y). 
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In the following it shall be assumed that if (A*, A) is the graph 
coordinate of ((X, Y) , (X ' ,  Y')), then s p e c ( A * A ) ~ C - [ 1 , ~ )  and 
s p e c ( A A * ) c C - [ 1 ,  ~) .  This assumption and Proposition 2.1 show that 
(P -A 'A )* -  is well-defined. Let g(z) be the interpolating polynomial on 
the nonzero spectrum of ( P -  A 'A)  ~* for the standard branch o f f ( z )  = z 1/2. 
Since s p e c ( P - A ' A ) =  spec(P •  AA*), g(z) can be used to define square 
roots for ( P - A ' A )  ~ and (P•  ~ given by 3,=g((P-A*A):*) and 
3, *=  g((P•  The following fact'is useful in computations. 

Proposition 2.2. A3, = y*A and 3,A* = A*3,*. 

Proof Note that 

A ( P - A * A )  ~ = (P• - AA*)*(P • - AA*)A(P - A 'A )  ~ 

( P •  A A * ) * A ( P -  A * A ) ( P -  A ' A )  ~ 

= ( p •  �9 

Now I introduce some terminology from symplectic geometry. An 
n-dimensional subspace X of V is a Lagrangian subspace relative to a 
nondegerate 2-form w if for any u, vEX,  then w(u, v)=O. A pair of 
subspaces (X, Y) is a Lagrangian pair relative to w if X and Y are 
Lagrangian subspaces relative to w. Background information on symplectic 
geometry can be found in Sternberg and Guillemin (1984) and Weinstein 
(1977). I also introduce the following notation. Let (X, Y) be a splitting of 
V. Let D(x,v) be the set of nondegenerate 2-forms on V having (X, Y) as 
a Lagrangian pair. Similarly, viewing 2-vectors as forms on the dual of V, 

, denote by D(x,y ) the set of nondegenerate 2-vectors on V having 
(ann(X),  ann(Y))  as a Lagrangian pair. Let M(x,y) C End(V) be defined 
by M(x,y )= {E Iran(E) = Y and ker(E)  = X}, and let V(X,y) CE End(V) x 
End(V) be the set of graph coordinates that satisfy the above restrictions. 
That is, 

V(x,v) = {(A*, A)I ran(A *) c y c  ker(A*), ran(A) c X c ker(A), 

and spec(A*A) c C - [1, 0o)} 

Definition 2.1. Let ((X, Y), (X', Y')) be a transverse pair of splittings 
with graph coordinate (A* ,A)c  V(x,y~. For ogcD(x,y  ) and Ac * D(x,Y), 
define W(A*,A)~ D(x'v'~ and A(A*,A)~ D~x,v,) as follows. If u, v~ V, let 

~O(A* A)( U, V) = w( 3,( P -  A*)u, 3,*( P •  A )v) 

+w(3,*(P• 7 ( P - A * ) v )  (1) 

and if h,/z ~ V*, let 

A(A*,a)(h,/z) = A(((P+A)T)Th, ((P• + A*)3,*)r/z) 

+A(((P• ( (P + A) 3,)T/x) (2) 
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Also, if E ~ M(x,y), 
u, v c V, let 

and if A,/z ~ V*, let 

define toe ~ D(x,y)  and Ae 6 D~x,y) 

oJz(u, v) = w(Eu, v) + to(u, Ev) 

as follows. If  

(3) 

AE(A,/z) = A(E TA,/z) + A(A, Er/x) (4) 

Definition 2.2. For any 2-form to and 2-vector A on V the charge of 
the pair (A, to) is the endomorphism ~(A, to) c End(V) given by ~(A, to) = 
C(A @ to), where C denotes the contraction on the second and third entries. 

The reasons behind this choice of terminology will become apparent 
in the next section. Definition 2.1 and 2.2 have the following consequences. 
First note that a nondegenerate 2-form to on V determines a transpose on 
End(V). For A ~ E n d ( V ) ,  define A t t E n d ( V )  for u, v~ V by to(u, A v ) =  
to(A'u, v). 

Proposition 2.3. If  ((X, Y), (X',  Y')) is a transverse pair of splittings 
with graph coordinate (A*, A) c V(x.v) and if (A'*, A') are the graph coor- 
dinates of  the pair ((X' ,  Y'), (X, Y)), then, for w c D(x.v) and Ae  D(x,r) ,  

( t o (A* , A ) ) (A '* ,A ' )  = to, ( A ( A * , A ) ) ( A ' * , A ' )  = A ,  

Proposition 2.4. If  ((X, Y), (X',  Y')) is a transverse pair of splittings 
with graph coordinate (A*, A) and to ~ D(xov) and A c * D(x,v), then (1) 

(~(A(A*,A), t o ( A * , A ) )  = ( PL + A*)T*CC( A, to)y*( P •  A) 

+ ( P + A ) y ~ ( A ,  t o ) y (P-a* )  

and (2) if E ~ M(x.v) and if the transpose is determined by w, then 

~(A~, toE) = UC(A, to)E + E~(A, to)E' + ~(A, to)E'E' 

The proofs of Proposition 2.3 and Proposition 2.4 are rather long 
computations that follow from Definition 2.1. They can also be formulated 
in group-theoretic language. More on this aspect of  this construction shall 
appear later. 

Propositions 2.3 and 2.4 indicate that the identities (1)-(4) possess 
properties similar to the correspondence between velocity and mass, and 
momentum in special relativity. In fact, if ~(A, to)=cI ,  then 
~(A(A*,A), to(A*.A)) = CI and ~(A~, toe) = cE2 + cEt2. Thus, under transfor- 
mations (1) and (2) a scalar charge is invariant, while transformations (3) 
and (4) scale the charge by E2+E '2. These results are extensions of the 
familiar facts from special relativity that mass is an invariant of the Lorentz 
group but is variant under scale transformations. 
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The following propositions show that the structure of  the transforma- 
tions (1)-(4) is somewhat  more complicated than the structure of  the 
conformal Lorentz group. Since (2) and (4) are dual to (1) and (3), attention 
shall be restricted to 2-forms. First I introduce some terminology. Given a 
nondegenerate 2-form w, A c End(V) is symmetric relative to to if A '  = - A ,  
and A is skew symmetric if A '  = A. The switch in sign from the usual usage 
of  these terms is due to the fact that the transpose is defined relative to a 
skew-symmetric form. 

Proposition 2.5. Let ((X, Y), (X',  Y')) be a transverse pair of  splittings 
with graph coordinate (A*, A) ~ V ( x , y  ) and let to c D(x,v). Then to(a*,a) = 60 
if and only if A* and A are symmetric. 

Proof If to(A.,A)=W, thenforu, v~ X, og(yA*u, y*v)+to(y*u, 7 A * v ) =  
0 and for u,v~ Y, to(yu, y*Av)+oJ(y*Au, yv)=O. These relations and 
Proposition 2.2 imply that A* and A are symmetric. I f  A* and A are 
symmetric, then ( P - A * A ) ' = P •  * and so 3/'=3/*. Therefore, if 
B = p l  _ A and C = P• + A*, then for u, v c V, 

W(A*,A)(U, V)= to(U, C(BC)~Bv)+to(C(BC)~Bu,  v) 

But 

C( BC)~ B = CB( CB)~2CB = CB( CB) ~ = p, 

where P '  is the projection determined by the pair (Y' ,  X ' ) .  Since X '  and 
Y' are Lagrangian subspaces for to, it follows that to(a*,a~ = ~o. �9 

Corollary 2.1. Let to c D(x,v) and let (A*, A) ~ V(x,v). I f  X and Y are 
Lagrangian subspaces for O(A*A), then to(A*,A)= W. 

Proof I f  X and Y are Lagrangian subspaces for Wr then A* and 
A are symmetric. �9 

The next proposit ion gives the results of  some simple computations 
involving Definition 2.1 that are used in the following arguments. 

Proposition 2.6. Let ((X, Y), (X' ,  Y')) be a transverse pair with graph 
coordinate (A*, A) c V(x,v~ and let to ~ D(x, v). (1) If  E ~ M(x.v) and if 
E'= ( P + A ) y E 3 / ( P - A * ) ,  then E'c  M ( x , y )  and ((.OE)(A*,A) = ( to(A*,A))E" 
(2) Let ( C * , C ) c V ( x , y ) .  I f  C'*=(P+A)3/C*3/*(P•  and C ' =  
(P•  then (C'*, C')~ V(x,v,), and if C* and C are 
either symmetric or skew-symmetric relative to to, then C'* and C '  are 
symmetric or skew-symmetric relative to to(A*.A). 

Proposition 2.5 suggests that there is considerable freedom in the choice 
of  a pair from V(• to represent a given nondegenerate 2-form. In fact, 
Proposition 2.9 shows that certain nondegenerate 2-forms can be represented 
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in terms of elements of V ( X , y  ) that are skew-symmetric. To do this, it is 
necessary to consider triples of transverse pairs of splittings of V. In these 
arguments the following generalization of the addition law of velocity is 
required. The proof is an exercise in linear algebra. 

Proposition. 2.Z Given splittings (X, Y), (X', Y'), and (X", Y") such 
that ((X, r ) ,  (X', r ' ) ) ,  ((X, Y), (X", r")) ,  and ((X', r ' ) ,  (X", Y")) are 
transverse pairs with graph coordinates (C*, C), (A*, A), and (A'*, A'), 
respectively, then 

( A -  C)P '=  ( P •  (5) 

( A * -  C*)P '• = ( P - A * C ) A ' *  (6) 

where P is the projection determined by (X, Y) and P' is the projection 
determined by (X' ,  Y'). 

The next proposition extends Proposition 2.5. The proof uses Proposi- 
tion 2.5 and the fact that two elements of D(x , r  ) a r e  related by (3). This 
proposition is used to show that the construction of Proposition 2.9 gives 
the desired 2-form. 

Proposition 2.8. Let (A*, A), (A'*, A') c V(x,y), and (C*~C) ~ V ( x , , y ,  ) 

be the graph coordinates of the transverse pair of splittings 
((X, Y), (X', Y')), ((X, Y), (X", Y")), and ((X', Y'), (X", Y")), respec- 
tively. For any to e D(x.v), to(A*.A) = to(A'*,A') if and only if C* and C are 
symmetric relative to to(A*,A). 

Proof If  (C*, C) is symmetric relative to to(A*.A), then (X", Y") is a 
Lagrangian pair for to(A*,A), and so there is E ~ M(x.y) such that to(A*,A) = 
(toE)(A'*,A')" Choose A~ D~x,v) so that Cg(A, to)=I. Then Proposition 2.4 
and this identity imply that 

Cr (toE)(A'*,A'>) 

= (P• + A '* )y '*E '2y '* (P-  A'*) 

+ (P + A') T'E23,'(P z - A') = P"• + P" 

and so E 2 = P. Clearly, E is a continuous function of (C*, C), and V(x,y,~ 
is connected. Therefore, the fact that for (C*, C) = (0, 0), E = P and the 
fact that the identity is isolated in the set of idenipotent transformations 
imply that E = P. 

Conversely, suppose that tor Since (X", Y") is a 
Lagrangian pair for (to(A*,A))(C*,C) and to(A'*,A'), there exists E c M(x,y) 
such that ((toe)(A*A))(C*C) = to(A'*,A'). But then (X', Y') is a Lagrangian 
pair for ((toe)(A*.A))(C*,C) and so Corollary 2.1 implies that 
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( ( t o E ) ( A * , A ) ) ( C * , C )  = ( W E ) ( A * , A ) .  This in turn implies that (toE)(a*,a)= r 
and so toe = to. Hence, C* and C are symmetric relative to to(A*,A)- �9 

Proposition 2.9 gives the main result of  this section. It shows that given 
to c D(x,v) if (A*, A) e V(x,v) satisfies certain conditions, then to(a*,a) can 
be represented by to(A'*,a'), where A'* and A' are skew-symmetric relative 
to to. As a tool to be used in the proof, introduce a complex structure 
J e E n d ( V )  such that (1) J : X ~  Y and (2) for u, v e  Y, g(u, v)=to(u,  Jv) 
is an inner product on Y. 

Proposition 2.9. Let (A*, A ) e  V(x,v) be the graph coordinate of the 
transverse pair ((X, Y), (X' ,  Y')) and let toe D(x,v). If  a superscript t 
denotes the transpose relative to to, and P is the projection determined 
(X ,Y) ,  then define H = y t ( A t - A ) 7 ,  K = y * t ( A * ' - A * ) y  *, and L =  
~,*'(P-A*'A)~. If (]) k e r ( H ) = X  and k e r ( K ) =  Y, (2) spec(KL 'K*L+ 
K H ) c  C - ( 0 ,  cc) and s p e c ( H L H ~ U + H K ) c C - ( O ,  oo), and (3) L - L '  is 
sufficiently small, then there is a pair (A'*, A') e V(x,y) such that (A'*, A') 
are skew-symmetric and to(a*,a) = to(A'*,A')" 

Proof The pair (A'*, A') will be constructed from a transverse pair 
((X, Y), (X", Y") with the property that the graph coordinate (C'*, C') of 
((X' ,  Y'), (X", II")) is symmetric relative to to(A*,a) and the graph coordin- 
ate (A'*, A') is skew-symmetric. Suppose that (C'*, C ' )e  V(x,.y,) is deter- 
mined from (C*, C) e V(x, y) using Proposition 2.6. Then, using Proposition 
2.7, we find that the graph coordinate (A'*, A') of ((X',  Y'), (X", Y")) is 
given by 

a'* = ( A* + yC* y*~*)( P • + a y c *  y**~) ~ 

A '= (A+ "y*C'y~)(P+ A*y*Cy~)  *~ 

Assuming that C* and C are symmetric, (A'*, A') will be skew-symmetric 
if 

- C K C  + CL + L'C - H = 0 (7) 

- C*HC* + LC* + C*L' - K = 0 (8) 

We solve (7), as the solution to (8) is similar. Note that if a superscript t 
denotes the transpose relative to g, then L' = -JLtJ,  and so multiplying (7) 
by J gives 

J C ( K J ) J C  + J C L  + L'~JC - J H = O  (7') 

Since KJ  e End(Y)  is symmetric relative to g, there is ~r e End(Y)  such that 
~r z = 1, o -~ = cr and there is k e End(Y)  such that k is positive-definite relative 
to g and such that KJ  = kcrk. Let j e E n d ( Y |  such that  j2--  o', j j - - l ,  
and j~ =j.  Multiplying (7') by j k  on the left and kj on the right, letting 
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L' = j - l k - l L k j  and H' =jkJHkj, and setting C equal to jkCkj, we find that 
(7') becomes 

( C + L')~( C + L ') = L'ZL' + H ' (7") 

Let T =  L'~L'+H '. Note that T is real relative to the conjugation defined 
by o-, i.e., ~rTo-= T. Since T is similar to - ( K U K * L + K H ) ,  (2) implies 
that there is a real interpolating polynomial g(z)  for the standard branch 
of z 1/2 on the spectrum of T. Let S = g(T) .  Then S 2= T, S is real relative 
to o-, and S is symmetric. Let O(Y, C) be the complex orthogonal group 
on Y |  defined by g and let O~ = {o c O( Y, C)1o-6o- = o}. Also let 

G ~ = { h c E n d ( V |  and h t = - h }  

Equation (7") will have a solution if there is o e  O~ such that S o - o ' S =  
L ' -  L 't. However, the map o~. O~ -> G~, defined by a (o )  = So - orS, is invert- 
ible at the identity. This follows from the fact that if g(z) is determined by 
the standard branch f ( z )  = z 1/2, then spec(S) f? spec ( -S )  = qb. �9 

Proposition 2.9(3) states that the conditions guaranteeing the existence 
of a skew-symmetric pair (A'*, A') such that m(A*,A)= W(a'*a') are open. 
The formulation of a sufficient condition to replace (3) is complicated. Note 
that since O~ is isomorphic to O(p, q) for integers p and q with p + q = n, 
and since O(p, q) has compact subgroups, it is clear that for some L '~ - L' 
sufficiently large, solutions to (7") will not exist. Proposition 2.9(2) is too 
strong, for it is possible in certain circumstances to solve (7") for real 
endomorphism even though T has negative eigenvalues. For instance, if n 
is even and all real eigenvalues of T are negative, the solutions to (7") 
always exist. Also, in practice, it is necessary to solve (7) and (8) without 
the assumption that K and H are nonsingular on Y and X. When Proposi- 
tion 2.9(1), is relaxed (7) and (8) become a coupled pair of matrix equations. 
The solution of  these equations is not as easy as in the nonsingular case. 

Proposition 2.9 is crucial to the arguments of the next section. This is 
because the following result holds for pairs from V(x,v) that are skew- 
symmetric relative to some to ~ D(x,y ). 

Proposition 2.10. Let ((X, Y), (X',  Y')), ((X' ,  Y'), (X", Y")), and 
((X, Y), (X",  Y")) be transverse pairs of splittings with graph coordinates 
(A*, A), (C*, C), and (A'*, A'). If w c Dcx, v ~ and if A*, A, A'*, and A' 
are skew-symmetric relative to to, then (to(A*,A))(C*,C)= to(A'*,A'). 

3. IMPLICATIONS FOR DYNAMICS 

The general construction mentioned in the introduction gives a second- 
order dynamical formalism for sections of a fibered manifold pair (M, S, ~r). 
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Here S is the base and ~ r : M ~  S is the fibration. The idea is to extend 
sections of  (M, S, ~-) to sections of  Ak(M) for some appropriate  choice of  
k. On Ak(M) there is a natural generalization of a Hamiltonian structure 
that determines when an extended section is a solution to the given dynami- 
cal conditions. The first example of this construction is Hamiltonian 
mechanics, where S = N, M is arbitrary, and k = 1. In this instance the 
dynamical conditions are specified by a Hamiltonian vector field on T*M. 
The following discussion shall examine the case where S is arbitrary, 
M = T 'S ,  and k = 2. It shall be argued that these dynamical structures can 
be associated with electrodynamics. For simplicity assume that S = Rn and 
so M -- T*N n is diffeomorphic to N" x R n where ~r : T*R n -~ Nn is the projec- 
tion onto the first factor. 

Begin by transferring in the standard manner  the linear algebraic 
structures developed in Section 2 to manifolds. I f  X is a subbundle of 
TT*R n and z c  T*N n, denote by X~ the subspace of TT*R7 determined by 
X at z. Let ( q l , . - . ,  q, , ,P l , . . .  ,P,,) be the standard coordinates on T*N" 
and let (Q1 . . . .  , Qn, P1, �9 �9 -, P,)  be the standard coordinate vector fields. 
Relative to these coordinates the canonical symplectic and cosymplectic 
structures on T*R n are determined by the 2-form Wo=Y~7=, dp~ ^ dqi and 
the 2-vector field Ao=~7=a P~^ Q~. TT*R" possesses a natural splitting 
(Xo, Yo) given by Xoz = 0 x R "  and Yo~ =N" x0.  Clearly, ~OoC D(xo,Vo~ and 
Aoe D'~xo.Vo~. Let/Do be the projection determined by (Xo, Yo). I f  (X, Y) is 
a second constant splitting of TT*R" such that ((Xo, Y0), (X, Y)) is a 
transverse pair with graph coordinate ( A *, A) c V( xo. Vo~, and if E c M~ xo. Vo~ 
is also constant, then (O~0E)(A* A~ is closed, and a natural choice of Darboux 
coordinates is given by 

(q', p ' )  = ( ' g ( E q - A * p ) ,  3"* (p -AEq) )  (9) 

Note that if A* = 0, if A is skew-symmetric relative to w0, and if E = Po, 
then (9) reduces to the Legendre transformation determined by the constant 
field 2A. 

The pr;ncipal dynamical  objects of this construction are submanifolds 
F ~ T*R n such that ~r[r is a diffeomorphism. These objects represent unpara- 
metrized vector potentials. The dynamics of  F depends on the choice of  a 
parametrization of F by a diffeomorphism o- : E" ~ F, g = (~r~, ~r2). 

Definition 3.1. A momentum for ~r is a map A~: ~ n ~  A2(T*~")Ir such 
that A,~(q)~ A2(T*~n)~(q). Equivalently, A,~ is a section of o-*A2(T*E"). 

The first step in constructing a dynamics for F is to introduce an 
algorithm that determines a momentum for a given parametrization ~r. The 
algorithm to be introduced is similar to the procedure given in special 
relativity to determine the momentum of a parametrized world line 3' : R ~ E4. 
Recall that the momentum of 3' at to ~ R can be determined by boosting the 
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standard coordinates to the rest frame of  3' at to. The time component  of  
3~(to) determines the mass, the boost determines the velocity, and these 
quantities in turn determine the momentum. An analogous procedure can 
be implemented here. I f  f :  R n o R " ,  denote the Jacobian o f f  by D f  

Proposition 3.1. Let o-:Rn ~ T*R n be such that 7rotr is a diffeomorph- 
ism. I f  for q ~ R" and z = tr(q), (A*, A) ~ V(xo~, Yo~ and E ~ M(xo~. Vo:) satisfy 
(1) Dcr2(q)-AD~r,(q) = 0 and (2) yEDoh(q) = 1, then D(q'o~r(q)) = 1 and 
V(p 'o t r (q ) )  =0.  

Proof The proof  is a computation using (9) and the chain rule. �9 

Proposition 3.1 states that if (A*, A) ~ V(xo, go) and E c M(xo. Vo) are 
constant and satisfy hypotheses (!)  and (2) at q ~ ~n, then ~r agrees up to 
first order at q with a map tr' constant in the coordinates (9), i.e., tr' = (q', c). 
In this case it can be said that tr is instantaneously at rest at q in the 
coordinates (9). Let the pair  (A*, A) be called the velocity of tr at q, let E 
be called the charge of  tr at q, and let h~ :0~n~ o-*A2(T*R n) defined by 
I~o-(q) = (toOE)(A*,A) be called the relativistic momentum of  o- at q. To justify 
this choice of  terms, note that A is the graph coordinate of  TF~ relative to 
the splitting (Xo~, Yo~) of  TT*R z", and so giges projective first-order informa- 
tion about the vector potential, in the same way that the velocity gives 
projective information about the tangent to a parametrized world line. I f  
A* = 0 and E = P0, then cr is a section of T*R n and the relativistic momentum 
reduces to the field strength of  the vector potential o-. Also, if trl(q) = cq, 
then tr2(q)---(Zr[r)-~(cq), and so if E = cPo, the vector potential must be 
scaled by c. Hence, E can be identified with a scaling of the charge of  the 
vector potential much in the same way that a scaling of the time parameter  
can be identified with the scaling of the mass associated with a parametrized 
world line. 

The parametrization tr does not uniquely determine the velocity. Since 
Do h is invertible, A is determined by (1), but A* must be determined in 
terms of A by a constitutive relation. The standard constitutive relation of 
free space can be implemented by introducing an almost complex structure 
J ~ E n d ( T * ~  ~) such that (1) J is symmetric relative to tOo, (2) JXo = Yo, 
and (3) for u, v c TT*RT, g( u, v) = tOo(U, .Iv) is a Minkowski inner product. 
To determine A* from A, set A* = JA'J, where the transpose is determined 
by too. Let V~xo.Vo~C V(xo,vo~ be the elements of  V(xo,Vo~ that satisfy this 
equality. 

Now we describe the construction that produces dynamical equations 
for parametrizations of  F. To apply this procedure,  it is necessary to extend 
the momentum A~o 7r [ r :Fo  A2(T*E')I r  tO a section of A2(T*~ ' )  defined 
in a neighborhood of F. To accomplish this, let Z be a subbundle of  TT*R" 
of dimension n transverse to F; i.e., for all z ~ F ,  TT*RT= TF~OZ~. For 
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each z ~ F, ifZz is viewed as a linear submanifold T*•", then extend h~o ~rir 
along Z by affine translation. This procedure constructs a section to~ : U--> 
A2(T*Rn), for some neighborhood U of F, such that to~lr = AcT~ 7r[r and if 
X is an affine vector field on U along Z, then Lxto,~ = 0. In the standard 
model of  electrodynamics Z is taken to be the vertical distribution; see 
Souriau (1970). 

The dynamics of  o- is determined by to~ and a dynamical structure on 
A2(T*R n) that is analogous to the Minkowski Hamiltonian structure on 
T*~". Adopt  the convention that underscored indices are associated with 
p coordinates and indices that are not underscored are associated with q 
coordinates. Using this notation, let (q~, p~, P0, ~J ,  ~J) be the natural coor- 
dinates on A2(T*R"); i.e., if to ~ A2(T*R")(q,p), t-hen 

to = E p,~ dq, ^ a~  + Y p .  ap, ^ clpj + Z p_,~ ap, ^ dq~ 

Define the function H on AZ(T*R ") by 

The canonical 3-form 1~ on A2(T*~") is given by 

n =  2 dpo A dqi A dqj + E dpij A dpi A dp: + E dpij A dpi A dq j 

Note that the 2-vector field 

H = E J~lPl,, J,,j Q~ ̂  Qj + E J ~ pt_w & P~ ̂  Pj + E Jj~ p~_, Ju P~ ̂  Q, 

has the property i(II)12 = dH. Therefore, II  plays the role of  a Hamiltonian 
2-vector field for the function H. Although, unlike Hamiltonian 1-vector 
fields, II  is not uniquely determined by H and ~ ,  but also depends on a 
choice of  horizontal. As in Hamiltonian mechanics, H induces a Legendre 
transform ~ ,  which in this case maps 2-forms on T ' R "  into 2-vectors on 
T 'R" .  I f  w is a 2-form and z~  T 'R" ,  define 5r = r where ~r 
is the projection of  A2(T*R ") onto T 'R" .  The following proposit ion is a 
direct consequence of Definition 2.1. 

Proposition 3.2. Let to be a 2-form on T 'R" .  If, for z c T*R ", there is 
(A*, A) c V~xo~,Yo~) and E c M(xo.  Vo~) such that to(z) = ( toOE)(A*,A) ,  then 
~e( to) (z )  = ( A o ~ . ) ( ~ .  ~). 

By a generalization of  Hamil ton-Jacobi  theory, the 2-vector field II 
induces a set of  first-order partial differential equations for sections of  
A2(T*R"). It is found that the pair (~( to) ,  to), determined by a 2-form to 
on T 'R" ,  is a solution to the dynamical problem determined by II  if the 
1-form f,o = i (~( to))  dto- �89 vanishes. We call f~ the force on to. 
Note the similarity between this expression and the intrinsic expression of 
the geodesics equation in metric geometry. 
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Now suppose that tr is chosen so that the charge of cr is the identity; 
i.e., E--Po.  In this case Proposition 2.4 implies that cg(~(to,), to~)= 
Cs tOo) = / ,  and so the expression for the force reduces to 

fore = i(~(tO,~)) dtOr (10) 

One difference between this equation and the mechanical analog is that in 
this case the expression for the force depends upon how the momentum he 
is extended to a neighborhood of F, while in the mechanical case the force 
depends only on the tangent vector to the curve in question. The next 
proposition shows how the choice of the subbundle Z affects quantities 
used in the calculation of (10). First note that the coordinate vector fields 
(QI, P'i) determined by (9) with E = Po are given by 

(QI, P'i) = ((Po + A)yQi, (P~ + A*)3J*Pi) (11) 

The following arguments require that a graph coordinate (C*, C) relative 
to a splitting (X, Y) be expressed in terms of their components relative to 
the frame field given by (11). Adopt the convention that the indices of the 
matrix representation ({C~}, {~})l~i , j=,  for (C*, C), refer to the frame 
field specified by choosing the frame at z ~ T*~" to be given by (11). Here 
(A*, A) is the graph coordinate of the transverse pair ((Xo~, Yoz), (Xz, Yz)). 
Let B*c End(T 'R") ,  B* :Xo~  Yo, be the graph coordinate of Z relative 
to the splitting (Xo, Yo)- 

Proposition 3.3. Let ((Xo, Y0), (X, Y)) be a transverse pair of splittings 
with graph coordinate (A*, A) ~ V(xo, ro}. At z ~ T*R ~, let B* ~ End(T*R")z 
such that ran(B*)=Yo~=ker(B*) and for all i , j , k ~ ( 1 , . . . , n ) ,  (Pk+ 
B*Pk)A,j(z) = 0 and (Pk + B*Pk)A*(z) -- 0. Let (C*, C) be the graph coor- 
dinate of the constant splitting ((Xo, Yo), (X', Y')) such that X" = X~ and 
Y'~ = Y~. If (A'*, A') is the graph coordinate of ((X', Y'), (X, Y)), then at z 

AIj*,k = ( Po- ~-'l~* f ~ h  4~ l / 2  A ] ih rlh].m\--Ol" D •  - -  C C * )  ~_j 1 /2  

• ((Po- B*C)(Po-  C*C)*'/2)mk (12) 

Ajj, k = (p~ r~,,~,~*l/2,i ro  r * r ' l V l / 2  
- -  I..A.~ JAb ~ h l ,  rnk I O - -  ~ ~.~JIj  

x ((Po- B*C)(Po-  C*C)*l/2)mk (13) 

t ~  Aq.k : (Po-C*C)~l /2" t*  rD• rr*~*l/2 ih z"Xhl, rnkJt O - -  '~-~'~-~ } l j  

x ((B* - C*) (P~-  CC*)*'/2)mk (14) 

A ~ j , k = ( p ~ _ r , o * ~ l / 2 a  r p  r ' * r ~ * ~ l / 2  _ v,...,~..~ ]j_h. x'-i_hl, rnk O - -  *-" ~"~l 

x ( (B* -  C*) (P~-  CC*)~'/2)mk (15) 
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Proof  First note that if X is a vector field such that LxPo = 0, then 
since A ( z )  = C ( z ) ,  Proposition 2.7 implies that 

LxP~ a ' (  z) = ( P~ - CC*)  *~ L x A (  z ) 

LxPoA'(  z ) = C*(  P~ - CC*)  * L x A (  z ) 

So L x A ( z )  = 0 implies L x A ' ( z )  = O. Therefore, for i,j, k ~ ( 1 , . . . ,  n), 

(Pk - B * e k ) A ~ ( z )  = 0 

Now 

But 

A~ = -wO(A* a)( Q'i, A '  Q'j) 

A 'QI  = (P~ + C * ) ( P ~ - A C * ) * ~ ( A  - C ) ( P o -  C * C )  *~l/2Qi 

and so 

A~j = W o ( ( P ~ -  C C * ) ' / 2 ( P ~ -  A C * ) ~ * ( A -  C ) ( P o -  C ' C ) . , / 2 Q j ,  Qi) 

Differentiating with respect Qk and evaluating at z gives 

QkA'z( z ) = ( P~ - CC*)  ~h'/2 QkAm( z )( Po - C ' C ) ~ ' / ~  - ~  _ l j  

But (11) implies that 

Qk = ( Q ~ -  PlC;t)( P o -  CC*)  ~k '/2 

and so  

QkAjj( z ) = QIA'z( z )( ( Po - C* C ) I/2( p o -  B* C ) ~ ) ,k 

Substituting this expression gives (12). The rest follow by similar argu- 
ments. �9 

The central result of this construction is that it is possible to choose 
the subbundle Z such that if h~ is extended affinely along Z, then the force 
on to~ in standard coordinates has the following properties. (1) if at z e F, 
A * ( z )  = 0, then 

foo = (O, ~ (A* + A*' ) (z)q . i  dpj)  

and (2) if fo,= = (f i , f2) ,  then there is C ~ E n d ( T ' R " )  such that C is skew- 
symmetric and f2C = f t .  Property (1) is the statement that for small A*, the 
force determined by (10) should reduce to the standard force law of 
electromagnetism. Actually, the reduction to the standard model does not 
depend on the choice of Z, but is a consequence of Definition 2.1. Property 
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(2) is the stronger requirement. As suggested by property (1), the p com- 
ponent of the force is related to the field equations. Property (2) requires 
that the q component of the force be linearly related to the p component 
in a manner that is analogous to the relation between force and power in 
special relativity. Property (2) will imply that in the limit of small A* the 
q component of the force reduces to the divergence of the trace-free 
electromagnetic energy-momentum tensor. 

To choose the subbundle Z such that to, satisfies (1) and (2), it is 
necessary to assume that if h~ = tO0(A* A~, where A is the graph coordinate 
of TF relative to (Xo, Y0), then there is a skew-symmetric pair (A'*, A') so 
that h~ = tOo(a,*.a, ) . T h u s ,  it shall be assumed that the conclusions of Proposi- 
tion 2.9 apply to the pair (A*, A). If, along F, h~ is extended in the direction 
determined by A'*, then the force will satisfy (1) and (2) with C = A'. 

Proposition 3.4, Let (A*, A) ~ V(~xo, Yo)[r such that there exists (A'*, A') 
V(xo,Yo)lr with A'* and A' skew-symmetric relative to Wo and (.Oo(a*,m) = 

COO(A,*A,). If  at z ~ F, B*(z) = A'*(z), then the force at z is given by 

f OJo(a. a) = 2 ~ ~ At*/t)• At* At'~ 4# dpk x~tij, i ~ . z  0 - -z - -x  z l ,  ]]_k 
k i ,  l 

- 2 Y ~ Y  A , * A ,  ~O A'*A,~* l - l i l ,  i " x ] j k "  0 - - 1 1 t  1"1 ] j k  dqk (16) 
k i, l 

Proof. Let (X', Y') be the splitting determined by (A'*, A') and let 
(X", Y") be the constant splitting such that X"(z )=X' ( z )  and Y"(z)= 
Y'(z). Let (C*, C) be the graph coordinate of ((Xo, Yo), (X", Y")) and let 
(A"*, A") be the graph coordinate of ((X", Y"), (X', Y')). I f / z  = Wo(c*.c), 
then relative to the coordinates (9) determined by ((Xo, Yo), (X", Y")) with 
E = Po it is easy to see that 

f ~(A,,* A,,~(z) = 2 ~=l (i~=l A:~_~i( z) ) dp'k + 2 ~=l (i~=l A'k._i(z)) dqrk 

If  B* (z) = A"* (z), then (15) implies that the second term in the sum vanishes 
at z, and (12) implies that the first term reduces to 

fma,,.a,.,(Z)=2 ~ ( ~ mil. i(z)(Po'* • 
' k = l  i , l = l  - 

Now substitute 
dp'k--ro • . 4 , . 4 , * ' ~ * 1 / 2  d p  I r D •  A,  A,*'~ =~ 1/2  A ,  - -  k l O  - 1 - 1 r l  ) k l  - -  \ 1 0  - - 1 ~ t  " 1  ] b j  zajt dqt 

for dp~, to get 

f~,,,. ,,,, = 2 Y. Y. "~,!,i,--0a'* tO• __a,*a,~,_l ,_l_k ~ dpk 
k i, l 

- 2 Z Y ,  ' *  ' - Aq,,Ao(P o A'*A')~ dqk 
k i ,  I 
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But Proposition 2.10 implies that ~.s : O')O(A'*,A') = tOO(A*,A) and similarly 
if M = Ao(c*,c), then M(A"*,A") = A0(A'*,A') = A0(A* ,A) .  S o ,  by Proposition 3.2, 

f ~(A,,* A . )= f OJo(A* A) �9 �9 

Proposition 3.4 shows that Proposition 2.9 extends the standard relation 
between the derivative of the vector potential and the field. In fact, if A* = 0, 
it is easy to see that the solution to (7) is the skew-symmetric part of A. 
However, for A*~  0, Proposition 2.9 says that in order to guarantee a 
solution to (7) and (8), A must be bounded. This has the interesting 
consequence that in this model of electrodynamics the conservation laws 
may break down at sufficiently high field strengths. 

4. CONCLUDING REMARKS 

The first remark is that Proposition 3.4 is the result advertised in the 
introduction. The crucial assumption in the derivation of (16) is that the 
relativistic momentum A~ of the parametrization cr of F must satisfy 
~(~(A~), A~) = cI. Proposition 3.4 shows that by restricting the value of the 
charge, one obtains a relation between the p and q components of the 
dynamical 1-form fo,~ that is analogous to the relation between power and 
force that follows from the conservation of mass in relativistic dynamics. 
One interesting and perhaps important characteristic of this construction 
is that the quantity that appears to represent charge is not a scalar quantity, 
but rather is endomorphism-valued. Also note that when the charge is 
restricted to scalar values, one obtains a "relativistic" analog of classical 
electrodynamics. 

Returning to the proof of Proposition 3.4, if 

f,t~(A,'..A.) = 2  f J i d p :  
i = 1  

then after transforming to standard coordinates, one can write (16) 
equivalently as 

y. '* _ p •  a , @ a , ' t l / 2  
Aik ,  i -~ .J l (_  O--  zat "-1 ~!_k (17) 

i I 

a , * a ,  _ ' o r  r p •  A,*a,~l/2a, Zail, i ~ ] k  --Z.~"nl~, 0 -- .,'a J!~ "Wk (18) 
i, 1 l,j 

Note that if one neglects factors of 7, then (17) reduces to the dynamical 
Maxwell equations, and (18) along with the condition A ~ o , k ) = O  is the 
divergence law for the energy-momentum tensor. 

Solutions to (17) give those vector potentials F that are generated by 
the current Ji- However, the solution of (16) is complicated by the manner 
in which (A'*, A') depend on the parametrization of F. A simpler but 
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somewhat nonphysical model can be obtained by choosing the distribution 
Z to be the vertical distribution. In this model a system of equations similar 
to (17) can be shown to have bounded,  radially symmetric electrostatic 
solutions. The scale of  these solutions is determined by the boundary  
condition at infinity and a constant g that equates the physical dimensions 
of  A* and A; i.e., A* = (1/g2)jA'J. In this discussion g has been set to 1. 
The constant g is the analog of  the speed of light. It is not hard to see that 
g has the dimensions of  force. I f  g is assumed to be a product  of  the 
fundamental  constants G, c, and h, then g = ca/G. As a result, the radius 
of  the electrostatic solutions for this value of  g is much smaller than the 
classical electron radius; in fact, it is approximately equal to the Planck 
length. 
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